#include "SpiMaster.h" #include #include #include #include using namespace Pinetime::Drivers; SpiMaster::SpiMaster(const SpiMaster::SpiModule spi, const SpiMaster::Parameters& params) : spi {spi}, params {params} { mutex = xSemaphoreCreateBinary(); ASSERT(mutex != NULL); } bool SpiMaster::Init() { /* Configure GPIO pins used for pselsck, pselmosi, pselmiso and pselss for SPI0 */ nrf_gpio_pin_set(params.pinSCK); nrf_gpio_cfg_output(params.pinSCK); nrf_gpio_pin_clear(params.pinMOSI); nrf_gpio_cfg_output(params.pinMOSI); nrf_gpio_cfg_input(params.pinMISO, NRF_GPIO_PIN_NOPULL); // nrf_gpio_cfg_output(params.pinCSN); // pinCsn = params.pinCSN; switch (spi) { case SpiModule::SPI0: spiBaseAddress = NRF_SPIM0; break; case SpiModule::SPI1: spiBaseAddress = NRF_SPIM1; break; default: return false; } /* Configure pins, frequency and mode */ spiBaseAddress->PSELSCK = params.pinSCK; spiBaseAddress->PSELMOSI = params.pinMOSI; spiBaseAddress->PSELMISO = params.pinMISO; uint32_t frequency; switch (params.Frequency) { case Frequencies::Freq8Mhz: frequency = 0x80000000; break; default: return false; } spiBaseAddress->FREQUENCY = frequency; uint32_t regConfig = 0; switch (params.bitOrder) { case BitOrder::Msb_Lsb: break; case BitOrder::Lsb_Msb: regConfig = 1; default: return false; } switch (params.mode) { case Modes::Mode0: break; case Modes::Mode1: regConfig |= (0x01 << 1); break; case Modes::Mode2: regConfig |= (0x02 << 1); break; case Modes::Mode3: regConfig |= (0x03 << 1); break; default: return false; } spiBaseAddress->CONFIG = regConfig; spiBaseAddress->EVENTS_ENDRX = 0; spiBaseAddress->EVENTS_ENDTX = 0; spiBaseAddress->EVENTS_END = 0; spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 6); spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 1); spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 19); spiBaseAddress->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos); NRFX_IRQ_PRIORITY_SET(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn, 2); NRFX_IRQ_ENABLE(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn); xSemaphoreGive(mutex); return true; } void SpiMaster::SetupWorkaroundForFtpan58(NRF_SPIM_Type* spim, uint32_t ppi_channel, uint32_t gpiote_channel) { // Create an event when SCK toggles. NRF_GPIOTE->CONFIG[gpiote_channel] = (GPIOTE_CONFIG_MODE_Event << GPIOTE_CONFIG_MODE_Pos) | (spim->PSEL.SCK << GPIOTE_CONFIG_PSEL_Pos) | (GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos); // Stop the spim instance when SCK toggles. NRF_PPI->CH[ppi_channel].EEP = (uint32_t) &NRF_GPIOTE->EVENTS_IN[gpiote_channel]; NRF_PPI->CH[ppi_channel].TEP = (uint32_t) &spim->TASKS_STOP; NRF_PPI->CHENSET = 1U << ppi_channel; spiBaseAddress->EVENTS_END = 0; // Disable IRQ spim->INTENCLR = (1 << 6); spim->INTENCLR = (1 << 1); spim->INTENCLR = (1 << 19); } void SpiMaster::DisableWorkaroundForFtpan58(NRF_SPIM_Type* spim, uint32_t ppi_channel, uint32_t gpiote_channel) { NRF_GPIOTE->CONFIG[gpiote_channel] = 0; NRF_PPI->CH[ppi_channel].EEP = 0; NRF_PPI->CH[ppi_channel].TEP = 0; NRF_PPI->CHENSET = ppi_channel; spiBaseAddress->EVENTS_END = 0; spim->INTENSET = (1 << 6); spim->INTENSET = (1 << 1); spim->INTENSET = (1 << 19); } void SpiMaster::OnEndEvent() { if (currentBufferAddr == 0) { return; } auto s = currentBufferSize; if (s > 0) { auto currentSize = std::min((size_t) 255, s); PrepareTx(currentBufferAddr, currentSize); currentBufferAddr += currentSize; currentBufferSize -= currentSize; spiBaseAddress->TASKS_START = 1; } else { BaseType_t xHigherPriorityTaskWoken = pdFALSE; if (taskToNotify != nullptr) { vTaskNotifyGiveFromISR(taskToNotify, &xHigherPriorityTaskWoken); portYIELD_FROM_ISR(xHigherPriorityTaskWoken); } nrf_gpio_pin_set(this->pinCsn); currentBufferAddr = 0; BaseType_t xHigherPriorityTaskWoken2 = pdFALSE; xSemaphoreGiveFromISR(mutex, &xHigherPriorityTaskWoken2); portYIELD_FROM_ISR(xHigherPriorityTaskWoken | xHigherPriorityTaskWoken2); } } void SpiMaster::OnStartedEvent() { } void SpiMaster::PrepareTx(const volatile uint32_t bufferAddress, const volatile size_t size) { spiBaseAddress->TXD.PTR = bufferAddress; spiBaseAddress->TXD.MAXCNT = size; spiBaseAddress->TXD.LIST = 0; spiBaseAddress->RXD.PTR = 0; spiBaseAddress->RXD.MAXCNT = 0; spiBaseAddress->RXD.LIST = 0; spiBaseAddress->EVENTS_END = 0; } void SpiMaster::PrepareRx(const volatile uint32_t cmdAddress, const volatile size_t cmdSize, const volatile uint32_t bufferAddress, const volatile size_t size) { spiBaseAddress->TXD.PTR = 0; spiBaseAddress->TXD.MAXCNT = 0; spiBaseAddress->TXD.LIST = 0; spiBaseAddress->RXD.PTR = bufferAddress; spiBaseAddress->RXD.MAXCNT = size; spiBaseAddress->RXD.LIST = 0; spiBaseAddress->EVENTS_END = 0; } bool SpiMaster::Write(uint8_t pinCsn, const uint8_t* data, size_t size) { if (data == nullptr) return false; auto ok = xSemaphoreTake(mutex, portMAX_DELAY); ASSERT(ok == true); taskToNotify = xTaskGetCurrentTaskHandle(); this->pinCsn = pinCsn; if (size == 1) { SetupWorkaroundForFtpan58(spiBaseAddress, 0, 0); } else { DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0); } nrf_gpio_pin_clear(this->pinCsn); currentBufferAddr = (uint32_t) data; currentBufferSize = size; auto currentSize = std::min((size_t) 255, (size_t) currentBufferSize); PrepareTx(currentBufferAddr, currentSize); currentBufferSize -= currentSize; currentBufferAddr += currentSize; spiBaseAddress->TASKS_START = 1; if (size == 1) { while (spiBaseAddress->EVENTS_END == 0) ; nrf_gpio_pin_set(this->pinCsn); currentBufferAddr = 0; xSemaphoreGive(mutex); } return true; } bool SpiMaster::Read(uint8_t pinCsn, uint8_t* cmd, size_t cmdSize, uint8_t* data, size_t dataSize) { xSemaphoreTake(mutex, portMAX_DELAY); taskToNotify = nullptr; this->pinCsn = pinCsn; DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0); spiBaseAddress->INTENCLR = (1 << 6); spiBaseAddress->INTENCLR = (1 << 1); spiBaseAddress->INTENCLR = (1 << 19); nrf_gpio_pin_clear(this->pinCsn); currentBufferAddr = 0; currentBufferSize = 0; PrepareTx((uint32_t) cmd, cmdSize); spiBaseAddress->TASKS_START = 1; while (spiBaseAddress->EVENTS_END == 0) ; PrepareRx((uint32_t) cmd, cmdSize, (uint32_t) data, dataSize); spiBaseAddress->TASKS_START = 1; while (spiBaseAddress->EVENTS_END == 0) ; nrf_gpio_pin_set(this->pinCsn); xSemaphoreGive(mutex); return true; } void SpiMaster::Sleep() { while (spiBaseAddress->ENABLE != 0) { spiBaseAddress->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos); } nrf_gpio_cfg_default(params.pinSCK); nrf_gpio_cfg_default(params.pinMOSI); nrf_gpio_cfg_default(params.pinMISO); NRF_LOG_INFO("[SPIMASTER] sleep") } void SpiMaster::Wakeup() { Init(); NRF_LOG_INFO("[SPIMASTER] Wakeup"); } bool SpiMaster::WriteCmdAndBuffer(uint8_t pinCsn, const uint8_t* cmd, size_t cmdSize, const uint8_t* data, size_t dataSize) { xSemaphoreTake(mutex, portMAX_DELAY); taskToNotify = nullptr; this->pinCsn = pinCsn; DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0); spiBaseAddress->INTENCLR = (1 << 6); spiBaseAddress->INTENCLR = (1 << 1); spiBaseAddress->INTENCLR = (1 << 19); nrf_gpio_pin_clear(this->pinCsn); currentBufferAddr = 0; currentBufferSize = 0; PrepareTx((uint32_t) cmd, cmdSize); spiBaseAddress->TASKS_START = 1; while (spiBaseAddress->EVENTS_END == 0) ; PrepareTx((uint32_t) data, dataSize); spiBaseAddress->TASKS_START = 1; while (spiBaseAddress->EVENTS_END == 0) ; nrf_gpio_pin_set(this->pinCsn); xSemaphoreGive(mutex); return true; }