#include #include #include "SpiMaster.h" #include using namespace Pinetime::Drivers; SpiMaster* spiInstance; SpiMaster::SpiMaster(const SpiMaster::SpiModule spi, const SpiMaster::Parameters ¶ms) : spi{spi}, params{params} { spiInstance = this; } bool SpiMaster::Init() { /* Configure GPIO pins used for pselsck, pselmosi, pselmiso and pselss for SPI0 */ nrf_gpio_pin_set(params.pinSCK); nrf_gpio_cfg_output(params.pinSCK); nrf_gpio_pin_clear(params.pinMOSI); nrf_gpio_cfg_output(params.pinMOSI); nrf_gpio_cfg_input(params.pinMISO, NRF_GPIO_PIN_NOPULL); nrf_gpio_cfg_output(params.pinCSN); pinCsn = params.pinCSN; switch(spi) { case SpiModule::SPI0: spiBaseAddress = NRF_SPIM0; break; case SpiModule::SPI1: spiBaseAddress = NRF_SPIM1; break; default: return false; } /* Configure pins, frequency and mode */ NRF_SPIM0->PSELSCK = params.pinSCK; NRF_SPIM0->PSELMOSI = params.pinMOSI; NRF_SPIM0->PSELMISO = params.pinMISO; nrf_gpio_pin_set(pinCsn); /* disable Set slave select (inactive high) */ uint32_t frequency; switch(params.Frequency) { case Frequencies::Freq8Mhz: frequency = 0x80000000; break; default: return false; } NRF_SPIM0->FREQUENCY = frequency; uint32_t regConfig = 0; switch(params.bitOrder) { case BitOrder::Msb_Lsb: break; case BitOrder::Lsb_Msb: regConfig = 1; default: return false; } switch(params.mode) { case Modes::Mode0: break; case Modes::Mode1: regConfig |= (0x01 << 1); break; case Modes::Mode2: regConfig |= (0x02 << 1); break; case Modes::Mode3: regConfig |= (0x03 << 1); break; default: return false; } setup_workaround_for_ftpan_58(NRF_SPIM0, 0, 0); NRF_SPIM0->CONFIG = regConfig; NRF_SPIM0->EVENTS_ENDRX = 0; NRF_SPIM0->EVENTS_ENDTX = 0; NRF_SPIM0->EVENTS_END = 0; NRF_SPIM0->INTENSET = ((unsigned)1 << (unsigned)6); NRF_SPIM0->INTENSET = ((unsigned)1 << (unsigned)1); NRF_SPIM0->INTENSET = ((unsigned)1 << (unsigned)19); NRF_SPIM0->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos); NRFX_IRQ_PRIORITY_SET(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn,6); NRFX_IRQ_ENABLE(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn); return true; } void SpiMaster::setup_workaround_for_ftpan_58(NRF_SPIM_Type *spim, uint32_t ppi_channel, uint32_t gpiote_channel) { // Create an event when SCK toggles. NRF_GPIOTE->CONFIG[gpiote_channel] = (GPIOTE_CONFIG_MODE_Event << GPIOTE_CONFIG_MODE_Pos) | (spim->PSEL.SCK << GPIOTE_CONFIG_PSEL_Pos) | (GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos); // Stop the spim instance when SCK toggles. NRF_PPI->CH[ppi_channel].EEP = (uint32_t) &NRF_GPIOTE->EVENTS_IN[gpiote_channel]; NRF_PPI->CH[ppi_channel].TEP = (uint32_t) &spim->TASKS_STOP; NRF_PPI->CHENSET = 1U << ppi_channel; } void SpiMaster::irqStarted() { if(busy) { auto s = currentBufferSize; if(s > 0) { auto currentSize = std::min((size_t)255, s); NRF_SPIM0->TXD.PTR = (uint32_t) currentBufferAddr; NRF_SPIM0->TXD.MAXCNT = currentSize; NRF_SPIM0->TXD.LIST = 0; currentBufferAddr += currentSize; currentBufferSize -= currentSize; NRF_SPIM0->RXD.PTR = (uint32_t) 0; NRF_SPIM0->RXD.MAXCNT = 0; NRF_SPIM0->RXD.LIST = 0; if(repeat == 0) NRF_SPIM0->SHORTS = 0; return; }else { if(repeat > 0) { repeat = repeat -1; currentBufferAddr = bufferAddr; currentBufferSize = bufferSize; s = currentBufferSize; auto currentSize = std::min((size_t)255, s); NRF_SPIM0->TXD.PTR = (uint32_t) currentBufferAddr; NRF_SPIM0->TXD.MAXCNT = currentSize; NRF_SPIM0->TXD.LIST = 0; currentBufferAddr += currentSize; currentBufferSize -= currentSize; NRF_SPIM0->RXD.PTR = (uint32_t) 0; NRF_SPIM0->RXD.MAXCNT = 0; NRF_SPIM0->RXD.LIST = 0; } } } } void SpiMaster::irqEnd() { if(busy) { if(repeat == 0 && currentBufferSize == 0) { nrf_gpio_pin_set(pinCsn); busy = false; } } } bool SpiMaster::Write(const uint8_t *data, size_t size, size_t r) { if(data == nullptr) return false; while(busy) { asm("nop"); } if(size == 1) { setup_workaround_for_ftpan_58(NRF_SPIM0, 0,0); NRF_SPIM0->INTENCLR = (1<<6); NRF_SPIM0->INTENCLR = (1<<1); NRF_SPIM0->INTENCLR = (1<<19); } else { NRF_GPIOTE->CONFIG[0] = 0; NRF_PPI->CH[0].EEP = 0; NRF_PPI->CH[0].TEP = 0; NRF_PPI->CHENSET = 0; NRF_SPIM0->INTENSET = (1<<6); NRF_SPIM0->INTENSET = (1<<1); NRF_SPIM0->INTENSET = (1<<19); } nrf_gpio_pin_clear(pinCsn); currentBufferAddr = bufferAddr = (uint32_t)data; currentBufferSize = bufferSize = size; repeat = r; busy = true; if(repeat > 0) NRF_SPIM0->SHORTS = (1<<17); auto currentSize = std::min((size_t)255, bufferSize); NRF_SPIM0->TXD.PTR = bufferAddr; NRF_SPIM0->TXD.MAXCNT = currentSize; NRF_SPIM0->TXD.LIST = 0; currentBufferSize -= currentSize; currentBufferAddr += currentSize; NRF_SPIM0->RXD.PTR = (uint32_t) 0; NRF_SPIM0->RXD.MAXCNT = 0; NRF_SPIM0->RXD.LIST = 0; NRF_SPIM0->EVENTS_END = 0; NRF_SPIM0->TASKS_START = 1; if(size == 1) { while (NRF_SPIM0->EVENTS_END == 0); busy = false; nrf_gpio_pin_set(pinCsn); } return true; } bool SpiMaster::GetStatusEnd() { return (bool)*(volatile uint32_t *)((uint8_t *)spiBaseAddress + (uint32_t)NRF_SPIM_EVENT_END); } bool SpiMaster::GetStatusStarted() { return (bool)*(volatile uint32_t *)((uint8_t *)spiBaseAddress + (uint32_t)NRF_SPIM_EVENT_STARTED); } void SpiMaster::Sleep() { while(NRF_SPIM0->ENABLE != 0) { NRF_SPIM0->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos); } nrf_gpio_cfg_default(params.pinSCK); nrf_gpio_cfg_default(params.pinMOSI); nrf_gpio_cfg_default(params.pinMISO); nrf_gpio_cfg_default(params.pinCSN); } void SpiMaster::Wakeup() { Init(); } void SpiMaster::Wait() { while(busy) { asm("nop"); } }