InfiniTime/src/drivers/SpiMaster.cpp
2021-06-12 11:07:23 +02:00

297 lines
8 KiB
C++

#include "SpiMaster.h"
#include <hal/nrf_gpio.h>
#include <hal/nrf_spim.h>
#include <nrfx_log.h>
#include <algorithm>
using namespace Pinetime::Drivers;
SpiMaster::SpiMaster(const SpiMaster::SpiModule spi, const SpiMaster::Parameters& params) : spi {spi}, params {params} {
}
bool SpiMaster::Init() {
if(mutex == nullptr) {
mutex = xSemaphoreCreateBinary();
ASSERT(mutex != nullptr);
}
/* Configure GPIO pins used for pselsck, pselmosi, pselmiso and pselss for SPI0 */
nrf_gpio_pin_set(params.pinSCK);
nrf_gpio_cfg_output(params.pinSCK);
nrf_gpio_pin_clear(params.pinMOSI);
nrf_gpio_cfg_output(params.pinMOSI);
nrf_gpio_cfg_input(params.pinMISO, NRF_GPIO_PIN_NOPULL);
// nrf_gpio_cfg_output(params.pinCSN);
// pinCsn = params.pinCSN;
switch (spi) {
case SpiModule::SPI0:
spiBaseAddress = NRF_SPIM0;
break;
case SpiModule::SPI1:
spiBaseAddress = NRF_SPIM1;
break;
default:
return false;
}
/* Configure pins, frequency and mode */
spiBaseAddress->PSELSCK = params.pinSCK;
spiBaseAddress->PSELMOSI = params.pinMOSI;
spiBaseAddress->PSELMISO = params.pinMISO;
uint32_t frequency;
switch (params.Frequency) {
case Frequencies::Freq8Mhz:
frequency = 0x80000000;
break;
default:
return false;
}
spiBaseAddress->FREQUENCY = frequency;
uint32_t regConfig = 0;
switch (params.bitOrder) {
case BitOrder::Msb_Lsb:
break;
case BitOrder::Lsb_Msb:
regConfig = 1;
break;
default:
return false;
}
switch (params.mode) {
case Modes::Mode0:
break;
case Modes::Mode1:
regConfig |= (0x01 << 1);
break;
case Modes::Mode2:
regConfig |= (0x02 << 1);
break;
case Modes::Mode3:
regConfig |= (0x03 << 1);
break;
default:
return false;
}
spiBaseAddress->CONFIG = regConfig;
spiBaseAddress->EVENTS_ENDRX = 0;
spiBaseAddress->EVENTS_ENDTX = 0;
spiBaseAddress->EVENTS_END = 0;
spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 6);
spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 1);
spiBaseAddress->INTENSET = ((unsigned) 1 << (unsigned) 19);
spiBaseAddress->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
NRFX_IRQ_PRIORITY_SET(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn, 2);
NRFX_IRQ_ENABLE(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0_IRQn);
xSemaphoreGive(mutex);
return true;
}
void SpiMaster::SetupWorkaroundForFtpan58(NRF_SPIM_Type* spim, uint32_t ppi_channel, uint32_t gpiote_channel) {
// Create an event when SCK toggles.
NRF_GPIOTE->CONFIG[gpiote_channel] = (GPIOTE_CONFIG_MODE_Event << GPIOTE_CONFIG_MODE_Pos) | (spim->PSEL.SCK << GPIOTE_CONFIG_PSEL_Pos) |
(GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos);
// Stop the spim instance when SCK toggles.
NRF_PPI->CH[ppi_channel].EEP = (uint32_t) &NRF_GPIOTE->EVENTS_IN[gpiote_channel];
NRF_PPI->CH[ppi_channel].TEP = (uint32_t) &spim->TASKS_STOP;
NRF_PPI->CHENSET = 1U << ppi_channel;
spiBaseAddress->EVENTS_END = 0;
// Disable IRQ
spim->INTENCLR = (1 << 6);
spim->INTENCLR = (1 << 1);
spim->INTENCLR = (1 << 19);
}
void SpiMaster::DisableWorkaroundForFtpan58(NRF_SPIM_Type* spim, uint32_t ppi_channel, uint32_t gpiote_channel) {
NRF_GPIOTE->CONFIG[gpiote_channel] = 0;
NRF_PPI->CH[ppi_channel].EEP = 0;
NRF_PPI->CH[ppi_channel].TEP = 0;
NRF_PPI->CHENSET = ppi_channel;
spiBaseAddress->EVENTS_END = 0;
spim->INTENSET = (1 << 6);
spim->INTENSET = (1 << 1);
spim->INTENSET = (1 << 19);
}
void SpiMaster::OnEndEvent() {
if (currentBufferAddr == 0) {
return;
}
auto s = currentBufferSize;
if (s > 0) {
auto currentSize = std::min((size_t) 255, s);
PrepareTx(currentBufferAddr, currentSize);
currentBufferAddr += currentSize;
currentBufferSize -= currentSize;
spiBaseAddress->TASKS_START = 1;
} else {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
if (taskToNotify != nullptr) {
vTaskNotifyGiveFromISR(taskToNotify, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
nrf_gpio_pin_set(this->pinCsn);
currentBufferAddr = 0;
BaseType_t xHigherPriorityTaskWoken2 = pdFALSE;
xSemaphoreGiveFromISR(mutex, &xHigherPriorityTaskWoken2);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken | xHigherPriorityTaskWoken2);
}
}
void SpiMaster::OnStartedEvent() {
}
void SpiMaster::PrepareTx(const volatile uint32_t bufferAddress, const volatile size_t size) {
spiBaseAddress->TXD.PTR = bufferAddress;
spiBaseAddress->TXD.MAXCNT = size;
spiBaseAddress->TXD.LIST = 0;
spiBaseAddress->RXD.PTR = 0;
spiBaseAddress->RXD.MAXCNT = 0;
spiBaseAddress->RXD.LIST = 0;
spiBaseAddress->EVENTS_END = 0;
}
void SpiMaster::PrepareRx(const volatile uint32_t cmdAddress,
const volatile size_t cmdSize,
const volatile uint32_t bufferAddress,
const volatile size_t size) {
spiBaseAddress->TXD.PTR = 0;
spiBaseAddress->TXD.MAXCNT = 0;
spiBaseAddress->TXD.LIST = 0;
spiBaseAddress->RXD.PTR = bufferAddress;
spiBaseAddress->RXD.MAXCNT = size;
spiBaseAddress->RXD.LIST = 0;
spiBaseAddress->EVENTS_END = 0;
}
bool SpiMaster::Write(uint8_t pinCsn, const uint8_t* data, size_t size) {
if (data == nullptr)
return false;
auto ok = xSemaphoreTake(mutex, portMAX_DELAY);
ASSERT(ok == true);
taskToNotify = xTaskGetCurrentTaskHandle();
this->pinCsn = pinCsn;
if (size == 1) {
SetupWorkaroundForFtpan58(spiBaseAddress, 0, 0);
} else {
DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0);
}
nrf_gpio_pin_clear(this->pinCsn);
currentBufferAddr = (uint32_t) data;
currentBufferSize = size;
auto currentSize = std::min((size_t) 255, (size_t) currentBufferSize);
PrepareTx(currentBufferAddr, currentSize);
currentBufferSize -= currentSize;
currentBufferAddr += currentSize;
spiBaseAddress->TASKS_START = 1;
if (size == 1) {
while (spiBaseAddress->EVENTS_END == 0)
;
nrf_gpio_pin_set(this->pinCsn);
currentBufferAddr = 0;
xSemaphoreGive(mutex);
}
return true;
}
bool SpiMaster::Read(uint8_t pinCsn, uint8_t* cmd, size_t cmdSize, uint8_t* data, size_t dataSize) {
xSemaphoreTake(mutex, portMAX_DELAY);
taskToNotify = nullptr;
this->pinCsn = pinCsn;
DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0);
spiBaseAddress->INTENCLR = (1 << 6);
spiBaseAddress->INTENCLR = (1 << 1);
spiBaseAddress->INTENCLR = (1 << 19);
nrf_gpio_pin_clear(this->pinCsn);
currentBufferAddr = 0;
currentBufferSize = 0;
PrepareTx((uint32_t) cmd, cmdSize);
spiBaseAddress->TASKS_START = 1;
while (spiBaseAddress->EVENTS_END == 0)
;
PrepareRx((uint32_t) cmd, cmdSize, (uint32_t) data, dataSize);
spiBaseAddress->TASKS_START = 1;
while (spiBaseAddress->EVENTS_END == 0)
;
nrf_gpio_pin_set(this->pinCsn);
xSemaphoreGive(mutex);
return true;
}
void SpiMaster::Sleep() {
while (spiBaseAddress->ENABLE != 0) {
spiBaseAddress->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos);
}
nrf_gpio_cfg_default(params.pinSCK);
nrf_gpio_cfg_default(params.pinMOSI);
nrf_gpio_cfg_default(params.pinMISO);
NRF_LOG_INFO("[SPIMASTER] sleep")
}
void SpiMaster::Wakeup() {
Init();
NRF_LOG_INFO("[SPIMASTER] Wakeup");
}
bool SpiMaster::WriteCmdAndBuffer(uint8_t pinCsn, const uint8_t* cmd, size_t cmdSize, const uint8_t* data, size_t dataSize) {
xSemaphoreTake(mutex, portMAX_DELAY);
taskToNotify = nullptr;
this->pinCsn = pinCsn;
DisableWorkaroundForFtpan58(spiBaseAddress, 0, 0);
spiBaseAddress->INTENCLR = (1 << 6);
spiBaseAddress->INTENCLR = (1 << 1);
spiBaseAddress->INTENCLR = (1 << 19);
nrf_gpio_pin_clear(this->pinCsn);
currentBufferAddr = 0;
currentBufferSize = 0;
PrepareTx((uint32_t) cmd, cmdSize);
spiBaseAddress->TASKS_START = 1;
while (spiBaseAddress->EVENTS_END == 0)
;
PrepareTx((uint32_t) data, dataSize);
spiBaseAddress->TASKS_START = 1;
while (spiBaseAddress->EVENTS_END == 0)
;
nrf_gpio_pin_set(this->pinCsn);
xSemaphoreGive(mutex);
return true;
}